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Abstract

An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in

example calculations and extended to toroidal geometry.  The scheme includes a kinetic electron

closure valid for e > me/mi ( e  is the ratio of the plasma electron pressure to the magnetic field

energy density).  The new scheme incorporates partially linearized ( f) drift-kinetic electrons

whose pressure and number density moments are used to close the fluid momentum equation for

the electron fluid (Ohm's law).  The test cases used are small-amplitude kinetic shear-Alfvén

waves with electron Landau damping, the ion-temperature-gradient instability, and the

collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma e.

Attention is given to resolution and convergence issues in simulations of turbulent steady states.

PACS numbers: 52.65.-y, 52.65.Tt, 52.35.Qz
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I. INTRODUCTION

Nonadiabatic electron effects significantly modify the stability and concomitant turbulent

transport of drift-waves in tokamaks. Incorporating electron kinetic and electromagnetic effects

into gyrokinetic  particle-in-cell drift-wave turbulence simulations is computationally

challenging: electrons and electromagnetics introduce additional time and space scales that alter

numerical stability, increase temporal and spatial resolution requirements and, hence, increase

the computational burden.  In previous work1 we extended the electromagnetic hybrid scheme of

Chen and Parker2 (fluid electrons and gyrokinetic ions) to include a kinetic electron closure valid

for emi / me ≥ 1  where e = 4 neTe / B2 , Te is the electron temperature, and B is the magnetic

field strength.  We introduced a new closure scheme that makes particle simulation of

electromagnetic drift-wave turbulence with drift-kinetic electrons and gyrokinetic ions tractable

with realistic mass ratios and realistic e.

The new algorithm incorporates partially linearized3,4 f  drift-kinetic electrons whose

pressure and number density moments are used to close the fluid momentum equation for the

electron fluid (Ohm's law).  Comparisons were made in Ref. 1 between the results of three

hybrid schemes with kinetic electron closures and a conventional f algorithm for drift-kinetic

electrons and gyrokinetic ions in a two-dimensional slab model.  The test cases used were small-

amplitude kinetic shear-Alfvén waves with electron Landau damping, the ion-temperature-

gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as

a function of e.  The hybrid schemes have the desirable properties that they do not require that

the mesh size perpendicular to the applied magnetic field be smaller than the collisionless skin

depth c/ pe and naturally accommodate zonal flow physics (radial modes5) with non-adiabatic
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electron effects.  The best of the new hybrid schemes uses a variation of the split-weight scheme

introduced by Manuilsky and Lee.6 In this case the electron distribution function fe is given by

  fe = fM (
r 
x ,

r 
v ) + ( ne

(0) / n0) fM (
r 
x ,

r 
v ) + he (

r 
x ,

r 
v ),  (1)

where fM is a Maxwellian velocity distribution function including possible equilibrium

temperature and density gradients, n0 is the equilibrium electron density, ne
(0) is the lowest-order

fluid approximation to the total electron density perturbation (more explicitly defined in Sec. II),

and he is the non-adiabatic part of the electron density perturbation determined using a variant of

the f method.  The split-weight algorithm is found to be efficacious in that statistical noise

arising from the particle representation is relegated to the relatively small he term in Eq.(1).  The

Hybrid II algorithm introduced in Ref. 1 gives very good results for emi / me ≥ 1 and poor results

in the opposite limit.

The new hybrid scheme departs from earlier work7,8,9,10 in several respects.  The research

of Reynders7 and Cummings8 did not use split-weight methods nor hybrid techniques, and their

algorithms could not efficiently address plasma conditions for which emi / me >> 1.  The

research of Cohen and Dimits9 used implicit f methods, did not use split-weight methods, and

did not address emi / me >> 1 plasma conditions. Chen and Parker have modeled kinetic

electrons in three-dimensional toroidal simulations using parallel canonical momentum and a

variant of the split-weight scheme; however, their simulations were still limited to emi / me ≤ 1.

The approach taken in our extended hybrid algorithm resembles in some respects the work of Lin

and Chen11 who introduced a new split-weight algorithm and applied it to the propagation of

small-amplitude shear-Alfvén waves in a uniform plasma.  Our extended hybrid algorithm

accommodates the nonlinear generation of zonal flows (radial modes5) not addressed in the work

of Lin and Chen.11  The work presented here illustrates the Hybrid II algorithm in additional test
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cases addressing accuracy and convergence in nonlinear simulations of drift-type turbulence and

extends the formulation of the algorithm to a toroidal flux-tube geometry.

The remainder of the paper is organized as follows.  In Section II we review the Hybrid II

kinetic extension of the Chen and Parker hybrid model.1,2 Section III reviews the results of the

Hybrid II algorithm in simulating the propagation and damping of small-amplitude shear-Alfvén

waves, small-amplitude collisionless drift and ion-temperature gradient (ITG) instabilities, and

simulation results for many-mode simulation of the linear growth and nonlinear saturation in two

spatial dimensions of an ITG instability.  The toroidal flux-tube extension of the Hybrid II

algorithm is given in Sec. IV.  In Section V we present simulation results that examine the

accuracy and convergence of the simulation results with respect to time step, size of the

simulation box, and particle statistics, and discuss the general accuracy and stability

characteristics of the Hybrid II algorithm.  In Section VI we conclude.

II. ELECTROMAGNETIC ALGORITHM FOR KINETIC SIMULATION OF DRIFT

AND SHEAR-ALFVÉN WAVES

In this section we describe the basic ingredients of the Hybrid II algorithm in a slab

configuration.  Ions are described as f gyrokinetic particles, and their trajectories are advanced

with a predictor-corrector scheme using a time step t that is the same as that used in the solution

of the field equations.  Electrons are described jointly by fluid equations generated by taking

moments of the drift-kinetic equations and as f drift-kinetic particles, whose trajectories are also

advanced with a predictor-corrector scheme using the same time step as that for the ions.  Ion

currents and charge densities, and electron parallel and perpendicular pressure moments and the

electron charge density are accumulated from the particles at each t and used in the fluid
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equations, Ampere’s law, and the quasi-neutrality equation to determine the electrostatic

potential and the parallel vector potential.

The ions and electrons satisfy the gyrokinetic reduced Vlasov-Maxwell equations8,10,12

with the following orderings:

  

fe ,i

FM
e,i ~

e
T ~ |

r 
B |
B ~

i
~ i

L ~ << 1   and   L ~ L|| , (2)

where i ≡ vi / i  is the ion Larmor radius defined as the ratio of the ion thermal velocity to the

ion cyclotron frequency, i = qB / mic , vi = (Ti / mi )
1 / 2, q, mi, and Ti, respectively, are the ion

charge, mass, and temperature; c is the speed of light, B is the equilibrium magnetic-field

strength,   
r 
B  is the perturbed magnetic field,  is the electrostatic potential,  is the frequency of

the field perturbation, L is a characteristic perpendicular equilibrium scale length of the system,

and L||  is the characteristic parallel wavelength of the perturbation.  We use a multi-scale

treatment throughout.1,4,5 The electric and magnetic fields are given by

         
r 
E = −

r 
∇ − c−1 r 

A || / t ,
r 
B =

r 
B 0 + ∇× Azˆ z = B0ˆ z + By

(0) ˆ y + ∇ ×Azˆ z . (3)

The ion and electron kinetic distribution functions are represented by

  fe,i = FM
e,i + fe,i (

r 
x ,

r 
v ,t), 

  
he, fi = wi

e,i r 
x −

r 
x i( )

i
∑

r 
v −

r 
v i( ), (4)

where   fe = ( ne
(0) / n0e) fM (

r 
x ,

r 
v ) + he (

r 
x ,

r 
v ) using Eq.(1).  The equilibrium distribution functions

FM
e,i  are Maxwellians in the parallel velocity and the magnetic moment.  The marker particles in

our simulations are initialized in velocity space using a Maxwellian distribution.  The partially

linearized gyrokinetic ion and drift-kinetic electron Vlasov equations for a plasma with weak

magnetic shear in slab geometry are4,13,14
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fi
t + v||

ˆ b ⋅ fir 
R 

− c
B

r 
R 

⋅ r 
R 

× ˆ b  
 

 
 fi

 
 

 
 

= − v||
Ti

r 
R 

⋅ ˆ b  
 

 
 FM

i − i
c
B y − v ||

B
A z
y

 
 

 
 FM

i (5)

  
fe
t + v||

ˆ b ⋅ fer 
R 

− c
B

r 
R 

⋅ r 
R 

× ˆ b ( ) fe
 
 

 
 =

v||
Te

r 
R 

⋅ ˆ b ( )FM
e − e

c
B y − v||

B
Az
y

 
 

 
 FM

e (6)

where ˆ b = ˆ z + ˆ y By
(0) / B0 + ∇× Azˆ z / B0 ,  ˆ b (0) = ˆ z + ˆ y By

(0) / B0 ,

s ≡ −∇ln FM
s = ns 1+ s v2 / 2vs

2 − 3 / 2( )[ ],  ns is the magnitude of the density gradient for

species s, s ≡ d lnTs / d ln ns ,

  ≡ 1
2 d ˆ ∫ (

r 
R +

r 
) (7)

and analogously for E , etc.,   
r 
R ≡

r 
x −

r 
,   

r 
≡

r 
v ⊥ × ˆ b / i , ˆ  is a unit vector in the direction of   

r 

(the integral in Eq.(7) is an integral around the Larmor orbit with respect to the gyrophase angle),

  
r 
x  is the particle positon vector,   

r 
v ⊥  is the perpendicular velocity,   fe,i (

r 
R , ,v||,t)  is the

gyroaveraged perturbed distribution function, and ≡ v⊥
2 / 2.  The electrons have small Larmor

radius.

Partial linearization is a simplifying ansatz. The justification for the partial linearization

for the ions has been addressed in the literature for low-frequency drift-type instabilities

satisfying the orderings laid out in Eq.(2) (for example, see Refs. 4, 8, 13 and 14).  Linear wave-

particle resonances for both electrons and ions are retained in the partially linearized equation

set.  Moreover, the important E×B kinetic trapping nonlinearity and the associated nonlinear

wave-particle interaction are retained for both species.  Because the orderings in Eq.(2) imply,

among other things, that k|| << k⊥ and k⊥ i ≈ O(1), for the low-frequency drift-type instabilities

of interest here the ×  velocity nonlinearity in kinetic equation dominates the nonlinearity
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associated with the parallel electric field and the velocity derivative of the perturbed distribution

function for the ions. However, the validity of partial linearization for the electrons is not so

clear. An algorithm including the parallel nonlinearity for the electrons will have more general

validity.  The inclusion of the parallel nonlinearity does not profoundly alter the

gyrokinetic/drift-kinetic particle algorithms as demonstrated by Parker, Lee, and others (see

Refs. 8 and 10 for examples). One consequence of including the parallel nonlinearity is that v|| is

no longer a constant of the motion.  For simplicity in this paper exploring a new algorithm, we

have suppressed the parallel electric-field nonlinearity in both the ions and electrons.  The

relative importance of the electron parallel electric-field nonlinearity needs investigation, and we

will include the electron parallel electric-field nonlinearity in future simulation work.

The electrostatic potential  is given by the gyrokinetic Poisson equation, which for a

single-ion species (species subscript i and singly charged), is given by

∇2 − ( − ˜ )

D
2 = 4 e n i − ne( ) , (8)

where  
˜ (

r 
x ) ≡ 1

2 d d ˆ ∫ (
r 
x −

r 
), ≡ Te / Ti, D

2 ≡ Te / 4 n0ee
2  is the square of the electron Debye

length, n0e is the unperturbed electron on density, n i  is the gyroaveraged perturbed ion density,

ne is the perturbed electron density, and for simplicity we have assumed that the ions are singly

charged.  The angle averages indicated in n i and  are replaced by averages over four points on

the ion Larmor orbit.  The field interpolations from the grid to the particles and the deposition of

distribution function moments from the particles onto the grid involve spatial weighting

functions. Ampere’s law relates the parallel component of the vector potential and the parallel

currents:
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−∇⊥
2 Az = 4

c je|| + ji ||( ) , (9)

and the ion current is computed to lowest significant order from the ion distribution

function, ji|| = d dv||v|| fi∫ .  We postpone discussion of the electron parallel current.  The

equilibrium density gradients are in the x direction, and the unperturbed magnetic field has its

principal component in the z direction with a small component in the y direction.  With no

magnetic shear By
(0)

 is a constant, and with shear By
(0) = B0(x − x0)/ Ls , where Ls is the magnetic

shear length.  In the unsheared slab, all quantities are subject to periodic boundary conditions.

With magnetic shear, the electric and vector potentials satisfy Dirichlet boundary conditions in x

and are periodic in  y.7-9   

The gyrokinetic ion particle equations of motion are given by

  d
r 
x / dt =

r 
v       

r 
v =

r 
v || +

r 
v E×B

(10)

  

dw j
i

dt = ev ||
Te

r 
E ⋅ ˆ b − i

c
B y − v||

˜ B x
B

 
 
  

 
, (11)

where the angle brackets in the right sides of Eq.(10) and (11) indicate a four-point average

around the ion Larmor orbit, ∇||
(0) ≡ ˆ b (0) ⋅ ∇, and wj

i  are the ion particle weights.

For the electrons we compute the parallel velocity moment of the drift-kinetic equation

and obtain the modified electron momentum equation (Ohm’s law) following the approach

introduced in Ref. 2 and rigorously justified in Ref. 16 for the orderings in Eq.(2):

  en0e

r 
E ⋅ ˆ b = −∇||P||e − n0eme( / t +

r 
v E×B ⋅∇ )u||e , (12)
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where ∇|| ≡ ˆ b ⋅ ∇, with

∇||P||e = ∇||P||e
(0) + T||e

(0)∇|| ne
( 0 )+ n0e∇|| T||e = ∇||P||e

(0) + T||e
(0)∇||( ne − ne

K ) + n0e∇|| T||e ,  (13)

using Eq.(1) to make the substitution ne
(0) = ne − ne

K , where ne
(0)  is the lowest-order fluid

component of the perturbed electron density, ne = ne
(0) + ne

K  is the total perturbed electron

density including kinetic corrections consistent with the density moment of Eq.(1), and

ne
K = d3vhe∫  is the split-weight kinetic electron increment to the charge density,

∇||(T||e
(eq) + T||e ) = 0  is imposed as a constraint on the fluid electron temperature representation,16

T||e
(eq)  is the equilibrium temperature (including gradients), P||e

(0) = ne
(0)T||e

(eq) , ne
( 0 ) is the

equilibrium density (including gradients),T||e
(0)  is a constant.  Non-adiabatic kinetic corrections to

Eqs.(12) and (13) derived from the second parallel velocity moment of Eq.(1) are higher order in

( /k||ve)2  than are the terms coming from the adiabatic response.  The representation of the

perturbed electron density as an expansion around the fluid density is completely analogous to

Ref. 11.  In our formulation the expansion parameter is ne
K / ne

(0) << 1.

Ohm’s law, Eq.(12) using (13) for the pressure gradient, is used to obtain E||. This electric

field together with   Az / t = c(
r 
E + ∇ ) ⋅ ˆ b (0)  is used to advance Az in time.  With the updated Az,

Ampere’s law determines the parallel electron current:

n0eu||e = c
4 e ∇⊥

2 Az + ||i, (14)
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where ||i is the gyrokinetic parallel ion current per unit charge.  The velocity integral of the

electron drift-kinetic equation yields the electron continuity equation which provides the

prescription for advancing the total electron density ahead in time:

  
ne
t + n0e (

r 
B (0) +

r 
B ⊥ ) ⋅∇ u||e

B +
r 
v E×B ⋅∇ne = 0 (15)

where ne = ne
(0) + ne .  Curvature and gradient-B drifts and toroidal effects are added in Sec.

IV.2,16  The electrostatic potential is obtained from the quasi-neutral form of  Eq.(8) suppressing

the first term on the left side of Eq.(8) and using the updated  total electron and ion charge

densities.  The evolution of the drift-kinetic electron positions, velocities, and weights deduced

from Eq.(6) is computed with a predictor-corrector  time integration (after using Eqs.(12), (13),

and (15)),

  d
r 
x / dt =

r 
v       

r 
v =

r 
v || +

r 
v E×B

(16)

  
dw j

e

dt =
r 

e ⋅
r 
v E× B + ( e − ne )v||

Bx
B0

− ne
(0) /n0e

t −
r 
v E×B ⋅∇ ne

( 0 )/ n0e + (v|| / ve
2 )( t +

r 
v E×B ⋅∇)u||e

  
≈ (

r 
v E ×B ⋅ ˆ x + v||

Bx
B0

) Te(v2

ve
2 − 3

2) + ∇||u||e + (v|| / ve
2)( t +

r 
v E ×B ⋅∇)u||e , (17)

where we have used the lowest-order approximation ne ≈ ne
(0)  in the continuity equation

employed in obtaining the final expression on the right side of (17), which makes explicit use of

the small parameter  ne
K / ne

(0)  in our perturbation expansion and is consistent with the formal

expansion procedure in Ref. 11. The parallel electric field in Eq.(16) is determined by Eq.(8) for

the electrostatic field and Eq.(12) for the electromagnetic contribution.   The last terms on the

right side of Eq.(17) arise from the electron inertia terms in Eq.(12),
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  −n0eme( / t +
r 
v E ×B ⋅∇ )u||e . To accommodate the electron inertia terms, we used an explicit

uncentered finite difference in time in the predictor step of the predictor-corrector time

integration of Eqs.(13-16).  With the exception of the electron inertia terms, the predictor-

corrector integration of the entire system is second-order accurate in time.  Retention or omission

of the electron inertia terms had no significant influence the simulations.   Our attempts so far to

include electron subcycling in the hybrid schemes have led to numerical instability and no

electron orbit-averaging15  has been undertaken.  Because of the partial linearization3,4 no parallel

electric field wave trapping of ions or electrons is allowed (however, the E×B kinetic trapping

nonlinearity is retained), and v||  is a constant for both species

III. TEST SIMULATIONS

In this section we review the results of test simulations with the Hybrid II algorithm.  The test

cases considered are kinetic shear-Alfvén waves (including electron Landau damping), the

collisionless-drift instability, and the ion-temperature-gradient instability.

A. Simulations of small-amplitude waves

With a finite-  ordering, emi
/m

e ≥ 1, the electrons are dominantly adiabatic but have

important nonadiabatic kinetic corrections in their dielectric response. Shear-Alfvén waves and

magnetized sound waves are the two fluid normal modes in a slab geometry with a uniform

plasma, k
||
<<k and << i << e , where k

||
 is the wavenumber component parallel to the

equilibrium field and e,i are the electron and ion cyclotron frequencies.  In Figure 1 we present a

comparison of the results of the Hybrid II simulations of kinetic shear-Alfvén waves and linear

theory.  Plotted are scans of Re 
i  and Im 

I vs. e  for k
y s

= π/8, Te=Ti, By
(0)/B0=0.01,

s=2 y, and a 32×32 grid.  Hybrid II results are denoted with “o” and Hybrid III (see Ref. 1)

results with “x”.  The dashed curve is linear theory.  The agreement with theory is excellent
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when emi / me > 1.  The hybrid algorithms become unstable for emi / me < 1; these algorithms

cannot recover the electrostatic limit because of the “backwards” solution of Eq.(14). There is no

requirement that the skin depth be resolved.  These results resemble those obtained in the

independent work of Lin and Chen.11

The Hybrid II algorithm yielded very good results for the collisionless drift-wave

instability.  In Fig. 2 we plot Re
i  and growth rates Im

i  from Hybrid II and conventional

f simulations vs.  e and 
pe

y/c for k
y s

= π/4, 
s/Ln

= 0.2, Te=Ti, By
(0)/B0=0.01, s=2 y, 16×16

grid, no magnetic shear, and only the (0,1) mode retained. The standard f simulation  described

in Refs. 1 and 8 gave good results only for mi me ≤ O(1)  and y<c pe, while the Hybrid II

algorithm gave good results for mi me > 1 and any skin depth.

The Hybrid II algorithm also yielded very good results for f slab simulations of

unsheared ion-temperature-gradient instability (ITG) and was able to accommodate finite e.   In

Fig. 3 we present results from Hybrid II simulations of ITG for a single linear mode with

ky s ≈ / 8, 
s
=2 x, 32×32 grid, no magnetic shear, y

(0)/B0=0.01, T
e
=T

i
, 

e
=

i
=4, 

s
/L

n
=0.1,

e
/

pe
=1,  and m

i
/m

e
=1836.  The Hybrid II simulations of unsheared ITG agree well with theory

for mi me > 1, and there is no constraint on the skin depth, c
pe, relative to the cell size x.

Linear theory is indicated by the dashed curve in Fig. 3.

B. Nonlinear Simulations of the Ion-Temperature-Gradient Instability

Previous simulation work1,4,5,7-9 has concluded that the slab, multi-scale physics model

with kinetic electrons and ions presented here should lead to saturated states with the radial

modes5,8,9 playing an important role.  In Figs. 4 and 5 we present results of nonlinear simulations

of ITG instability performed with the conventional f and Hybrid II algorithms showing linear

growth followed by nonlinear saturation mediated by the nonlinear generation of radial modes
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(ky=0, kx ≠ 0 ). Nonlinear, many-mode, two-dimensional slab simulation results with no shear,

By
(0)/B0=0.01, T

e
=T

i
, 

i
 =

e
=4, 

s
/L

n
=0.1, 

e
/

pe
=1, m

i
/m

e
=1836, 

s
= x, 16×16 grid, and

tcs/LT=0.4 are presented.   Super-gaussian k-space smoothing, exp(-k4a4), was used in the

conventional f code, and a Heaviside-function  was used in the Hybrid II algorithm (modes

were suppressed completely for k2a2>1, with a=1 in both algorithms).  When super-gaussian

smoothing was used in the Hybrid II algorithm, the shortest wavelength modes (k⊥ i >1)

affected by the filter (but not completely suppressed) were numerically unstable.  We believe

that this numerical instability is related to the instability observed when emi / me < 1 in all of

the hybrid algorithms,1 which is associated with the backwards solution of Ampere’s law in

Eq.(14) that becomes ill-posed in the electrostatic limit.  With adequate filtering, the ITG

instability saturates in the simulations; and the thermal flux across the pressure gradient and the

linear growth rates decrease together as a function of increasing e consistent with the quasilinear

argument in Ref. 9.  Figure 4 shows the time histories of the fastest growing linear mode and the

cross-field ion thermal flux.  Figure 5 displays the accompanying mode energy spectrum at

saturation showing the dominance of the radial mode and that an inverse cascade to longer

wavelengths has occurred in these small simulations.  The ion thermal fluxes (not time-averaged

or filtered) exhibit bursts of transport often seen in ITG simulations.  In sum, the Hybrid II

nonlinear simulations of the ITG instability exhibit well-behaved saturated states and yield

credible physics results.

IV. TOROIDAL FLUX-TUBE HYBRID II FORMULATION

Here we give the extension of the Hybrid II algorithm to a toroidal flux-tube geometry.  The

parallel electric field is determined from the modified electron momentum equation (Ohm’s law)

including toroidicity16
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  en0e

r 
E ⋅ ˆ b (0) = − ∇||P||e +

r 
B ⊥
B ⋅ ∇en0e − n0eme( / t +

r 
v ExB ⋅ ∇)u||e

− 1
2 P⊥e − P||e( ) ˆ b (0) ⋅∇ ln B (18)

where ∇||P||e = ∇||P||e
(0) + T||e

(0) ∇||( ne − ne
K ) + n0e∇|| T||e with ∇||(T||e

(eq) + T||e ) = 0 . The Ohm’s

law is then used to advance A||  in time,   A|| /c t = (
r 
E + ∇ ) ⋅ ˆ b (0) = ... With the updated A|| we use

Ampere’s law to determine the parallel electron flux from Eq.(14) as in the slab algorithm.  The

electron continuity equation including magnetic curvature is next used to advance the total

electron density:

  
ne
t + n0e (

r 
B (0) +

r 
B ⊥ ) ⋅∇ u||e

B +
r 
v E× B ⋅∇ne

  
+ 1

me eB2 (
r 
B × ∇B) ⋅∇(1

2 P⊥e + P||e ) + 2n0e

B3 (
r 
B × ∇B) ⋅∇ = 0 , (19)

where  s ≡ qsB0 / msc .  The electric potential   is determined from the quasineutrality relation

Eq.(8a) using the updated electron and ion densities.

The equations of motion for the gyrokinetic ions and the drift-kinetic electrons are

extended from Eqs.(11) and (16) to include both mirroring and the toroidal drifts as part of the

guiding center drifts   
r 
v gs:   

r 
v gs = v||

ˆ b +
r 
v E× B +

r 
v ds ,      

r 
v ds = (v||

2 + v⊥
2 / 2 )

r 
B × ∇B / sB2    with

  ̇ v || = (qs / ms) ˆ b ⋅
r 
E − ( s / ms) ˆ b ⋅∇ B+ v||(

ˆ b ⋅ ∇ˆ b ) ⋅
r 
v E×B , (20)

where   
r 
v E×B  is the E×B drift velocity and gyro-averaging of the ions is included in the standard

way.10,12-14,16 In a partially linearized implementation, the first and third terms on the right side of

Eq.(20) are suppressed if there are no equilibrium electric fields.  The gyrokinetic equation for

the ions yields the following equation for the ion weights in toroidal geometry10
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d
dt wi

i = −
r 
v gi ⋅ ∇ln FM

i − ˙ ln FM
i (21)

where  is the particle energy and   ˙ = ev||
ˆ b ⋅

r 
E + mi

r 
v E×B ⋅[v||

2 ˆ b ⋅ ∇ˆ b + (v⊥
2 / 2)∇ lnB].  From the

drift-kinetic equation for electrons with split-weights (after cancellations obtained by using

Ohm’s law and the continuity equation)

  
d
dt wi

e = ( e − ne ) ˆ x ⋅ (
r 
v E× B + v||

ˆ b ) −
r 
v de ⋅∇ ne /n0e +

r 
B ⋅∇ (u||e / B) + (v|| / ve

2 )( t +
r 
v E×B ⋅ ∇)u||e

  +v||(
ˆ b (0) ⋅∇ ln B)(1

2 p⊥e − p||e) / (n0eTe
(0) ) +

r 
v E×B ⋅( ||

ˆ b ⋅ ∇ˆ b + 1
2 ⊥∇ ln B) /Te

(0)

  +(n0eme eB2)(
r 
B × ∇B) ⋅ ∇( p||e + 1

2 p⊥e ) + (2c / B3)(
r 
B × ∇B) ⋅ ∇ (22)

Flux-tube coordinates are used with the following definitions:10 x=r-r0, y=( r0/q0)(q - ),

z=q0R0 .  Implementation of these equations in a code is underway.

IV. TIME-STEP, ACCURACY AND CONVERGENCE CONSIDERATIONS

For kinetic simulations to provide credible results there are a number of accuracy issues

that restrict the time steps and grid resolution used:

    k⊥vE×B t < 1  k⊥ x⊥ <1  k|| x|| < 1   t < 1   x⊥ ≤ i,s   k||vs t <1 (23)

where vs=(Ts/ms)
1/2 is the thermal velocity for each species.   The first condition in (23) is

representative of a restriction on resolving finite-amplitude phenomena.  There is also the

stability constraint set by k||vA t <1 for vA > cs . Taking into account that

x|| = (B0 / By
(0) ) y ≡ −1 y  in the two-dimensional slab, the Alfvén stability condition is

vA t / y <1. We note that ve / vA = ( emi / me )1 / 2 andvi / vA = ( eTi / Te )1 / 2.

We have demonstrated that in the conventional f simulation there is a constraint on

resolving the skin depth c / pe  with the grid spacing in order to accurately reproduce the linear

dispersion relation of shear-Alfvén waves and the drift instabilities.1  Because
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i /(c / pe ) = Ti / Te( )1 / 2
( mi / me )1 / 2, the skin depth c / pe  becomes smaller than i ~ s

when  emi / me > 1.  Note that c / pe=0.05 cm for ne=10
14

/cm
3
.  Thus, resolving the skin depth

becomes a more severe and onerous constraint than x⊥ ≤ s for emi / me > 1.  The Hybrid II

algorithm is not constrained to resolve the skin depth with the spatial grid, but it behaves well

only for emi / me ≥ 1.  With magnetic shear (not addressed here), populating the resonant

electron layer with particles can become an additional important accuracy constraint on the

simulations:9 xe ≡ (k|| / ky)Ls ~ ( ∗ /kyve )Ls ~ me /m i( )1 / 2
Ls / Ln( ) s .

With ve te / x|| ≤ O(1) our simulations are well-behaved, and self-heating and numerical

diffusion of the electron velocity distribution are acceptably small.17,18 In Figure 6 we show

results for Hybrid II simulations of the ITG and collisionless-drift instabilities in which the

frequencies and growth rates of a single small-amplitude mode are plotted as a function of time

step in the simulation.  Hybrid II simulations of ITG retain some sensitivity to electron kinetics:

ve t / y|| ≤ 1.5 is needed for accurate simulations of a system with i= e=4, e=0.035, 32×32

grid, mi/me=1837, ky s=π/8, =0.01, s/Ln=0.1, and no magnetic shear; and we note that there is

no electron subcycling.  The collisionless drift wave is more sensitive to electron kinetics:

ve t / y|| ≤ 0.3 is needed to accurately simulate a system with e=0.0049, 16×16 grid,

mi/me=1837, ky s=π/4, =0.01, s/Ln=0.2, and no magnetic shear.

The convergence of nonlinear simulations of drift-wave instability driven transport may

set the most restrictive condition on time step, and the time step may depend on the parameters

and physical conditions of the particular problem. 19 We consider examples in Fig. 7 of nonlinear,

many-mode, two-dimensional slab Hybrid II simulations as a function of time step.  The

simulation parameters were tcs/LT=0.4, 0.2, 0.1; e=2.2 ×10−3; no magnetic shear; =0.01;
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T
e
=T

I
; 

i
 =

e
=4; 

s
/L

n
=0.1; 

e
/

pe
=1; m

i
/m

e
=1836; 

s
=∆x; 16×16 grid; and Heaviside-function

mode filtering with a=1.  For these parameters we can relate tcs/LT tove t / y||:

tcs / LT = y/ LT( ) me /m i( ) B0 /By
(0)( )ve t/ y|| ≈ 0.2ve t/ y|| .  If the time step is not chosen

adequately small to resolve the nonlinear physics, there is a slow, secular, residual growth of the

electrostatic and vector potential mode energies and a concomitant slow growth of the averaged

cross-field thermal fluxes that in the supposedly saturated state.  The accuracy constraints on the

linear dispersion for ITG and collisionless drift-wave simulations in Fig. 6 set time step

conditions ve t / y|| < 0.5 that translate into tcs/LT<0.1.  These time steps are in keeping with

the converged results for the nonlinear simulations in Fig. 7 and within the range of time steps

typically used for the nonlinear toroidal gyrokinetic simulations in Ref. 19 which had gyrokinetic

ions and adiabatic electrons.  The experience presented here is encouraging for the addition of

kinetic electrons and electromagnetic coupling  to toroidal gyrokinetic simulations.  However,

we note that there are additional considerations that can influence the time step in toroidal

simulations, which are not addressed here.

We next consider nonlinear, many-mode slab simulations in Fig. 8 with increasing box

size (16×16, 32×32, 64×64) with e=2.2 ×10−3, no shear, =0.01, T
e
=T

i
, 

i
 =

e
=4, 

s
/L

n
=0.1,

e
/

pe
=1, m

i
/m

e
=1836, 

s
=∆x, Heaviside-function filtering in Hybrid II algorithm: ax=ay=1.

These simulations all saturate and are well behaved with credible physics results.  The physics

results are influenced by the inclusion of longer wavelength modes and the decreased spacing

between the modes in k space.

Statistical convergence with respect to both electrons and ions must be examined with the

inclusion of kinetic electron and electromagnetic effects.  In Fig. 9 we compare the results of



18

nonlinear, many-mode  slab simulations vs. particles per cell with e=2.2 ×10−3, no shear,

=0.01, T
e
=T

i
, 

i
 =

e
=4, 

s
/L

n
=0.1, 

e
/

pe
=1, m

i
/m

e
=1836, 

s
=∆x, 64×64 grid, Heaviside-

function filtering in Hybrid II algorithm: ax=ay=1. Increasing the number of particles per cell led

to a well-behaved saturation.  When under-resolved with respect to particles, the simulations did

not saturate properly.

V. CONCLUSION

Including both electron and ion kinetic effects using a realistic mass ratio and

accommodating a low-frequency electromagnetic model of the self-consistent electromagnetic

fields in the plasma add significant complexity to drift-wave turbulence simulation models.  The

algorithm studied here attempts to capture the physics of low-frequency ( << i ) drift-wave

phenomena, the coupling to kinetic Alfvén waves that occurs at finite plasma pressure, and linear

and nonlinear electron and ion kinetic phenomena (e.g., Landau resonance, particle trapping,

induced Compton scattering).  

The results presented indicate that significant progress is being made in adding kinetic

electron and electromagnetic effects to multi-dimensional gyrokinetic ion simulations of core

turbulent transport.  The Hybrid II algorithm yields good results for finite e, emi me >1, and

does not require that the cell size be smaller than the skin depth c/ pe, but leads to a numerical

instability for emi me <1.  Both the conventional f and kinetic-extended hybrid algorithms

have restrictions on the time step used and the statistical and spatial resolution needed to recover

the correct dielectric responses and to produce converged nonlinear steady states.  Similar non-

dimensional time steps are required in three-dimensional nonlinear toroidal gyrokinetic

simulations with adiabatic electrons.  Simulation examples of linear and nonlinear wave

phenomena have been presented that establish the utility of the Hybrid II algorithm.
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Figure Captions

Figure 1. Frequencies and damping rates from Hybrid II (o) and III (x) simulations of kinetic

shear-Alfvén waves as functions of the electron e.

Figure 2. Frequencies and growth rates from Hybrid II (∗) and conventional f (o) simulations of

the collisionless drift-wave instability as functions of the ratio of the cell size to the skin depth

and the electron e.

Figure 3. Frequencies and growth rates from Hybrid II simulations (with e=4) of the ion-

temperature-gradient instability as functions of the electron e.

Figure 4. The spatially averaged ion thermal fluxes in x normalized to the sound speed and the

modulus of the Fourier amplitude of the electric potential for the fastest growing mode from

conventional f and Hybrid II nonlinear simulations of the ion-temperature-gradient instability as

functions of time for three simulations at different values of e.

Figure 5.  The modulus of the Fourier amplitude of the electric potential as a function of ky for

kx=1 (both normalized to k ≡ / 8) averaged in time after saturation in three f and Hybrid II

nonlinear simulations of the ion-temperature-gradient instability for different values of e.

Figure 6. Frequencies and growth rates from Hybrid II simulations of the ion-temperature-

gradient and collisionless drift-wave instabilities as functions of the relative time step.

Figure 7. The spatially averaged ion thermal fluxes in x normalized to the sound speed and the

modulus of the Fourier amplitude of the electric potential for the fastest growing mode from

conventional Hybrid II nonlinear simulations of the ion-temperature-gradient instability as

functions of time for three simulations at different values of the relative time step.  The observed

linear growth rates are indicated.
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Figure 8. Nonlinear slab simulations of ITG instability: time histories of the cross-field ion

thermal fluxes and the fluctuation spectrum at the end of the simulation in ky for the electric

potential as a function of increasing box size in two dimensions.

Figure 9. Nonlinear two-dimensional slab simulations of ITG instability: time histories of the

cross-field ion thermal fluxes and a single Fourier mode of the electric potential as a function of

the number of particles per cell for each species.
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